Inhibition of voltage-gated sodium channels by sumatriptan bioisosteres

نویسندگان

  • Roberta Carbonara
  • Alessia Carocci
  • Julien Roussel
  • Giuseppe Crescenzo
  • Canio Buonavoglia
  • Carlo Franchini
  • Giovanni Lentini
  • Diana Conte Camerino
  • Jean-François Desaphy
چکیده

Voltage-gated sodium channels are known to play a pivotal role in perception and transmission of pain sensations. Gain-of-function mutations in the genes encoding the peripheral neuronal sodium channels, hNav1.7-1.9, cause human painful diseases. Thus while treatment of chronic pain remains an unmet clinical need, sodium channel blockers are considered as promising druggable targets. In a previous study, we evaluated the analgesic activity of sumatriptan, an agonist of serotonin 5HT1B/D receptors, and some new chiral bioisosteres, using the hot plate test in the mouse. Interestingly, we observed that the analgesic effectiveness was not necessarily correlated to serotonin agonism. In this study, we evaluated whether sumatriptan and its congeners may inhibit heterologously expressed hNav1.7 sodium channels using the patch-clamp method. We show that sumatriptan blocks hNav1.7 channels only at very high, supratherapeutic concentrations. In contrast, its three analogs, namely 20b, (R)-31b, and (S)-22b, exert a dose and use-dependent sodium channel block. At 0.1 and 10 Hz stimulation frequencies, the most potent compound, (S)-22b, was 4.4 and 1.7 fold more potent than the well-known sodium channel blocker mexiletine. The compound induces a negative shift of voltage dependence of fast inactivation, suggesting higher affinity to the inactivated channel. Accordingly, we show that (S)-22b likely binds the conserved local anesthetic receptor within voltage-gated sodium channels. Combining these results with the previous ones, we hypothesize that use-dependent sodium channel blockade contributes to the analgesic activity of (R)-31b and (S)-22b. These later compounds represent promising lead compounds for the development of efficient analgesics, the mechanism of action of which may include a dual action on sodium channels and 5HT1D receptors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage-Gated Sodium Channels Modulation by Bothutous Schach Scorpion Venom

Buthotus schach is one of the dangers scorpion in Iran that belong to the Buthidae family. Toxins are existing in venom scorpion, modulate the ion channels by blocking or opening the pore of the channel or by altering the voltage gating and useful as pharmacological tools. In the present study, we investigated the effect of venom and its obtained fractions by gel filtrations on electrophysiolog...

متن کامل

Inhibition of neuronal voltage-gated sodium channels by brilliant blue G.

Brilliant blue G (BBG), best known as an antagonist of P2X7 receptors, was found to inhibit voltage-gated sodium currents in N1E-115 neuroblastoma cells. Sodium currents elicited from a holding potential of -60 mV were blocked with an IC(50) of 2 μM. Block was enhanced in a use-dependent manner at higher stimulation rates. The voltage-dependence of inactivation was shifted in the hyperpolarizin...

متن کامل

A novel drug binding site on voltage-gated sodium channels in rat brain.

The effectiveness of several antiepileptic, analgesic, and neuroprotective drugs is attributable to state-dependent inhibition of voltage-gated sodium channels. To help characterize their site and mode of action on sodium channels, a member of the lamotrigine family, R-(-)-2,4-diamino-6-(fluromethyl)-5-(2,3,5-trichlorophenyl)-pyrimidine (BW202W92), was radiolabeled and used as a binding ligand ...

متن کامل

Mechanism linking NMDA receptor activation to modulation of voltage-gated sodium current in distal retina.

In this study, we investigated the mechanism that links activation of N-methyl-D-aspartate (NMDA) receptors to inhibition of voltage-gated sodium channels in isolated catfish cone horizontal cells. NMDA channels were activated in voltage-clamped cells incubated in low-calcium saline or dialyzed with the calcium chelator BAPTA to determine that calcium influx through NMDA channels is required fo...

متن کامل

Mechanism linking NMDA receptor activation to modulation of voltage-gated currents in a retinal neuron

In this study, we investigated the mechanism that links activation of NMDA receptors to inhibition of voltage-gated sodium channels in isolated catfish cone horizontal cells. NMDA channels were activated in voltage-clamped cells incubated in low calcium saline or dialyzed with the calcium chelator, BAPTA, to determine that calcium influx through NMDA channels is required for sodium channel modu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015